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Abstract— 3D LiDAR-based simultaneous localization and 

mapping (SLAM) is a well-recognized solution for mapping and 

localization applications. However, the typical 3D LiDAR sensor 

(e.g. Velodyne HDL-32E) only provides a very limited field of 

view vertically. As a result, the vertical accuracy of pose 

estimation is suffered. This paper aims to alleviate this problem 

by detecting the absolute ground plane to constrain the vertical 

pose estimation. Different from the conventional relative plane 

constraint, this paper employs the absolute plane distance to 

refine the position in the z-axis and the norm vector of the 

ground plane to constrain the attitude drift. Finally, relative 

positioning from LiDAR odometry, constraint from ground 

plane detection, and loop closure are integrated under a 

proposed factor graph-based 3D LiDAR SLAM framework 

(AGPC-SLAM). The effectiveness is verified using several 

datasets collected in scenes of Hong Kong. 

I. INTRODUCTION 

Accurate mapping and localization (Dill & Uijt de Haag, 
2016) are significant for autonomous systems, such as 
autonomous driving vehicles (ADV) (Huang et al., 2018), and 
indoor mobile robotics (Hess, Kohler, Rapp, & Andor, 2016). 
Great efforts have been devoted to achieving accurate 
simultaneous localization and mapping (SLAM) using 3D 
light detection and ranging (LiDAR) (Hess et al., 2016) sensor, 
due to its robustness compared with the vision-based SLAM 
methods (Qin, Li, & Shen, 2018). Vision-based SLAM based 
on the passive sensor, the camera, can be sensitive to the 
illumination and viewpoint change. Conversely, the active 
sensor, the 3D LiDAR, can provide distance measurements for 
surrounding environments which is invariant to the 
illumination. The outstanding robustness and precision make 
the 3D LiDAR an indispensable sensor for large-scale 
mapping and localization. 

The 3D LiDAR-based SLAM (Koide, Miura, & Menegatti, 
2018a; Lin & Zhang, 2020; Shan & Englot, 2018; Wen, Zhang, 
& Hsu, 2020; Zhang & Singh, 2014; Zhao, Fang, Li, & Scherer, 
2019) has been extensively studied in the past decades. In 
general, the 3D LiDAR SLAM algorithm can be gracefully 
divided into two parts, the front-end (Grisetti, Kummerle, 
Stachniss, & Burgard, 2010) and the backend (Grisetti et al., 
2010). The front-end focuses on the point cloud registration 
(Pang et al., 2019; Saarinen, Andreasson, Stoyanov, & 
Lilienthal, 2013). The backend integrates multiple constraints, 
such as positioning from the front end, positioning from the 
global navigation satellite system (GNSS) (Dow, Neilan, & 
Rizos, 2009; Shetty & Xingxin Gao, 2019), and loop closure 
(Magnusson, Andreasson, Nuchter, & Lilienthal, 2009b). The 
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accuracy of point cloud registration, which is the major part of 
the front-end, dominates the performance of the 3D LiDAR 

SLAM. Therefore, numerous works are studied to improve the 
point cloud registration process, such as the iterative closest 
point (ICP) (Kuramachi, Ohsato, Sasaki, & Mizoguchi, 2015), 
the normal distribution transform (NDT) (Magnusson, 
Lilienthal, & Duckett, 2007), and the  LiDAR odometry and 
mapping (LOAM) (Zhang & Singh, 2017). The LOAM 
algorithm obtains the top one accuracy in the KITTI dataset 
odometry benchmark (Geiger, Lenz, & Urtasun, 2012) until 
Dec 2020, due to its feature extraction and impressive data 
association structure. Unlike the point-wise registration 
methods (e.g. ICP and NDT), the LOAM extracts the 
meaningful edge and planar features from raw 3D point clouds, 
leading to lower computational load and decreased sensitivity 
to the local minimums. Instead of simply relying on finding 
the transformation between consecutive frames of point clouds 
(Low, 2004; Pang et al., 2019; Saarinen et al., 2013) via scan-
to-scan manner, the LOAM decouples the registration problem 
into two parts, coarse odometry, and fine mapping. Firstly, the 
coarse odometry conducts the scan-to-scan matching of the 
edge and planar features respectively to estimate a coarse 
relative transformation. Secondly, the innovative fine-
mapping process is conducted to map the current frame of 
point clouds to the continuously generated global map (scan-
to-map) based on the initial guess derived by the coarse 
odometry. The mapping process can help to mitigate the 
accumulated relative drift from LiDAR odometry in the first 
step. In short, the LOAM obtains a better performance 
comparing with the listed ICP and NDT. However, due to the 

limited field of view (FOV, typically +10°~ − 30° vertically, 

0~360°  horizontally) for typical 3D LiDAR, the available 
features in the vertical direction are significantly fewer than 
the one in the horizontal direction. As a result, inevitably, the 
3D LiDAR SLAM can drift in the vertical direction. To find 
out the major challenge of 3D LiDAR SLAM in urban canyons, 
we extensively evaluated the performance of 3D LiDAR 
SLAM in diverse urban canyons (Wen, Hsu, & Zhang, 2018). 
The results also showed that the vertical drift due to limited 
FOV of 3D LiDAR was one of the major problems to be solved 
for the application of 3D LiDAR SLAM in urban canyons. 

According to our evaluations (Wen et al., 2018) in 
numerous urban scenarios, it is shown that the ground surface 
is usually available for ground vehicles installed with 3D 
LiDAR. Furthermore, the 3D LiDAR scanning can provide 
sufficient ground points even in dense traffic scenes, which 
makes ground surface detection possible. Inspired by this 
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remarkable feature, this paper proposes to detect and apply the 
absolute ground plane constraint (AGPC) to constrain the state 
of the vehicle to further mitigate the vertical drift. In other 
words, the AGPC is employed to improve the geometry of the 
constraint. To mitigate the overall drift over time, the loop 
closure detection method is applied to exploit the loop closure 
constraint. Finally, a factor graph-based 3D LiDAR SLAM 
framework (AGPC-SLAM) is proposed to fuse relative 
positioning from LiDAR odometry, constraints from AGPC, 
and loop closure. 

The major contributions of this paper are listed as follows: 

1) Proposing to exploit the AGPC to mitigate the 
vertical drift of 3D LiDAR SLAM.  

2) Proposing a general 3D SLAM framework (AGPC-
SLAM) is proposed to integrate the constraint of 
relative positioning from LiDAR odometry, the 
AGPC, and the constraint from the loop closure. The 
proposed AGPC-SLAM is a general framework that 
can easily fuse additional information from sensors 
such as the GNSS receiver and magnetometers. 

3) The proposed method is validated using two 
challenging large-scale datasets collected in the 
typical scenes of Hong Kong. We believe that the 
proposed method can have a positive impact on both 
the academic and industrial fields. 

The remainder of the paper is structured as follows. The 
related work is reviewed in Section II. Then the overview of 
the proposed method is introduced in Section III. The detail of 
the methodology is introduced in Section IV before the 
experimental evaluation being presented in Section V. The 
conclusions and future work are given in Section VI. 

II. RELATED WORK 

To handle this problem, the LeGO-LOAM (Shan & Englot, 
2018) proposes to optimize the z-axis related states based on 
planar features. The drift in the z-axis and pitch angle is 
slightly mitigated compared with the LOAM algorithm (Zhang 
& Singh, 2017). However, as the vertical states are estimated 
relatively concerning the planar points, the drifted error can 
still accumulate over time with the vertical positioning error 
reaching more than 10 meters (Shan & Englot, 2018) in the 
evaluated dataset. Recently, they extend their LeGO-LOAM 
to the LiDAR/inertial (Shan et al., 2020) integration to mitigate 
the overall drift where the high-frequency pose estimation 
from inertial measurement unit (IMU) pre-integration is used 
as the initial guess of the mapping process. Meanwhile, the 
motion distortion is handled with the help of the IMU pre-
integration. However, the improvement relies on the cost of 
the IMU. In other words, the additional IMU cannot essentially 
solve the problem of weak constraint in the vertical direction. 

The recent work of the team from the Hong Kong 
University of Science and Technology (HKUST) (Ye, Chen, 
& Liu, 2019) proposes to tightly integrate the LiDAR and IMU 
to mitigate the overall drift. The tight integration scheme can 
effectively improve the geometry of the constraints arising 
from the raw point clouds. With the help of inertial 
measurements, the overall accuracy is improved compared 
with the LiDAR standalone SLAM. According to their 
evaluation, the vertical drift is improved compared with the 

LOAM. However, the performance relies on the quality of the 
applied IMU, and the tightly coupled integration process 
introduces a significantly higher computational load. 
Meanwhile, the problem of vertical drift is still unsolved. 
Instead of simply based on relative positioning, the work 
(Zheng, Zhu, Xue, Liu, & Fan, 2019) utilizes the global 
positioning system (GPS) to mitigate the drift of LiDAR 
SLAM. Nevertheless, the performance of GPS solutions relies 
heavily on environmental conditions, and the high-rising 
buildings in urban can significantly degrade their performance, 
leading to large positioning errors (Wen, Bai, Kan, & Hsu, 
2019; Wen, Zhang, & Hsu, 2019). Similar works were also 
done in (Chang, Niu, & Liu, 2020; He, Yuan, Zhuang, & Hu, 
2020). 

The work in (Lin & Zhang, 2020) included the loop closure 
into the LOAM to further reduce the drift. Unfortunately, the 
loop closure is hard to be detected due to the distinct vertical 
drift. Interestingly, the work in (Zuo, Geneva, Lee, Liu, & 
Huang, 2019) made use of both the camera and LiDAR to 
derive improved odometry accuracy. The camera can help the 
LiDAR standalone odometry to survive in a sparse area as the 
camera can capture texture information. Despite this, our 
previous work (Bai, Wen, & Hsu, 2020) shows that the visual-
based positioning shares a similar drawback of being sensitive 
to the dynamic objects in urban canyons. In short, the existing 
work tends to employ additional sensors to improve the overall 
accuracy of the 3D LiDAR SLAM, which can only partially 
reduce the speed of the vertical drift (Shan et al., 2020; Ye et 
al., 2019) or rely on the GNSS positioning accuracy (Chang et 
al., 2020; He et al., 2020; Zheng et al., 2019).  

III. OVERVIEW OF THE PROPOSED METHOD 

A. Notations and Coordinates 

Matrices are denoted as uppercase bold letters. Vectors are 
denoted as lowercase bold letters. Variable scalars are denoted 
as lowercase italic letters. Constant scalars are denoted as 
lowercase letters.  

To make the proposed framework clearer, the following 
notations are defined and followed by the rest of this paper.  

a) The local world frame (W{𝑋𝑊, 𝑌𝑊 , 𝑍𝑊}) is fixed to the 
world at the start point of the vehicle, which can also be 
fixed to the GNSS absolute frame when GNSS is 
available.  

b) The local base frame (L{𝑋𝐿 , 𝑌𝐿 , 𝑍𝐿}) is originated at the 
starting point of the local LiDAR odometry.  

c) The vehicle body frame (B{𝑋𝐵 , 𝑌𝐵 , 𝑍𝐵}) is fixed at the 
center of the 3D LiDAR sensor. 

The considered coordinate system is shown in Fig. 1. The 
(𝐓𝐵

𝐿) denotes the transformation from the body frame to the 
local base frame, encoding the information of the LiDAR 
odometry during the experiment. The transformation (𝐓𝐿

𝑊 ) 
denotes the transformation between the local base frame and 
the local world frame, which is the drift compensation 
estimated by the additional constraints (e.g. the loop closure 
constraints and the AGPC constraint). In other words, the 
local-based frame is fixed on the local world frame if there are 
no ground and loop closure constraints. Note that the definition 
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of the coordinates is referred to in the work in (Mascaro, 
Teixeira, Hinzmann, Siegwart, & Chli, 2018) which is 
commonly used in the SLAM field with loop closure 
constraint.  

Therefore, the state of the ego-vehicle at epoch k is 
encoded by the transformation from the body frame to the local 

world frame, 𝐓𝐵,𝑘
𝑊  as follow: 

𝐓𝐵,𝑘
𝑊 = (𝐩𝑘

𝑊 , 𝐪𝑘
𝑊)𝑇       (1) 

With 𝐓𝐵,𝑘
𝑊 = 𝑻𝐿,𝑘

𝑊 𝑻𝐵,𝑘
𝐿  

where the 𝐩𝑘
𝑊  represents the position and the 𝐪𝑘

𝑊  represents 
the orientation in the local world frame with quaternion form. 

 

Fig. 1 Overview of the applied coordinate systems. The local world frame is 
fixed at the starting point of the vehicle with x-right, y-forward, and z-up. 

The local base frame is fixed at the start point at the beginning. The body 

frame is fixed at the center of the 3D LiDAR with x-right, y-forward, and z-

up. 

B. Overview of the Proposed AGPC-SLAM 

The overview of the proposed AGPC-SLAM framework is 
shown in Fig. 2. The input of the AGPC-SLAM is the 3D 
LiDAR point cloud (𝐒𝑘, the raw point cloud at epoch k). The 
outputs of the proposed AGPC-SLAM are the vehicular 
trajectory and the consistent point cloud map.  

 

Fig. 2 Overview of the proposed AGPC-SLAM. The input is the 3D point 

cloud from 3D LiDAR. The outputs include the points map and pose 

estimation of vehicular trajectory. 

The AGPC-SLAM framework can be divided into two 

major parts, the front-end (the light green shaded boxes in Fig. 

2), and the back-end (the light blue shaded boxes in Fig. 2). 

The light red shaded box denotes the AGPC constraint 

proposed in this paper. Finally, the constraints from the front-

end and the AGPC are integrated using factor graph 

optimization in the back-end. The details of the major parts 

are presented in the following Sections. 

IV. METHODOLOGY 

A. Front-End 

The performance of the front-end is dominated by LiDAR 
odometry whose objective is to make the best use of the 
consecutive point clouds to estimate the relative motion. The 
LiDAR odometry is implemented based on the LOAM 
algorithm proposed in (Zhang & Singh, 2017) where three 
steps are included for the LiDAR odometry; features 
extraction, coarse odometry, and fine mapping. Although the 
LiDAR odometry itself is not the contribution of this paper, 
we still brief present the formulation for completeness. 

1) Feature Extraction 
Different from the point-wise registration method (e.g. 

NDT and ICP), the feature definition and extraction proposed 
in (Zhang & Singh, 2014) explores the representative 
primitives before the data association process. The input of the 
feature extraction is the 𝐏𝑘{𝐏𝑘,1, 𝐏𝑘,2, … , 𝐏𝑘,𝑖 , 𝐏𝑘,𝑁} . The 

variable N denotes the number of points inside a frame of point 
cloud. A point is classified as a planar or an edge point 
depending on the roughness of its local region. The roughness 
of the local region is determined as follow (Zhang & Singh, 
2017): 

𝑐𝑘,𝑖 =
1

|𝐒|∙||𝐏𝑘,𝑖||
|| ∑ (𝐏𝑘,𝑗 − 𝐏𝑘,𝑖)𝑗∈𝐒,𝑗≠𝑖 ||    (2) 

where the 𝑐𝑘,𝑖  represents the roughness of the point. The 

variable S denotes the small local region near the given point 
𝐏𝑘,𝑖 and usually, 5 points are involved in the local region. the 

𝐏𝑘,𝑗 indicates the point belonging to the local region S. If the 

calculated roughness is larger than a pre-determined threshold 
(t𝑐), the point is classified as an edge point. The point with 
roughness being small than the threshold is classified as a 
planar point. The output of the feature extraction process is the 

feature set 𝐅𝑘{𝐅𝑘
𝑝

, 𝐅𝑘
𝐸} , where the 𝐅𝑘

𝑝
 and 𝐅𝑘

𝐸  represent the 

feature set containing all the planar and edge points set, 
respectively. Meanwhile, the author (Zhang & Singh, 2017) 
also proposed careful feature point selection strategies to avoid 
unreliable points. For example, points that are on the boundary 
of the occluded regions should not be selected as those points 
can be unobservable in the coming epochs. Meanwhile, the 
points that lie on local planar surfaces that are roughly parallel 
to the LiDAR beams should not be selected as well. We strictly 
follow these strategies to select feature points from the raw 3D 
point clouds.  

2) Coarse Odometry 
Based on the features extracted in the last section, coarse 

odometry is performed to efficiently estimate the relative 
motion between consecutive frames of point clouds. The 
relative motion is calculated by conducting point-to-edge and 
point-to-plane scan-matching. In short, the objective is to find 

the corresponding features for points in 𝐅𝑘{𝐅𝑘
𝑝

, 𝐅𝑘
𝐸} from the 

feature points set 𝐅𝑘−1{𝐅𝑘−1
𝑝

, 𝐅𝑘−1
𝐸 }. The detailed steps can be 



Accepted in NAVIGATION, Journal of the Institute of Navigation 

 

 

found in (Zhang & Singh, 2017). We formulate the point cloud 
registration process as follows using  

𝐦𝑘−1,𝐵
𝑘,𝐵 = 𝑃𝐶𝑅(𝐅𝑘{𝐅𝑘

𝑝
, 𝐅𝑘

𝐸}, 𝐅𝑘−1{𝐅𝑘−1
𝑝

, 𝐅𝑘−1
𝐸 })   (3) 

where the 𝑃𝐶𝑅 denotes the point cloud registration function. 

The output of the point cloud registration process is the 

coarse relative motion, denoted by 𝐦𝑘−1,𝐵
𝑘,𝐵

. Be noted that the 

𝐦𝑘−1,𝐵
𝑘,𝐵

 is the motion between the frame 𝑘 − 1 and 𝑘. Since 

the 𝐦𝑘−1,𝐵
𝑘,𝐵

 is estimated based on scan-to-scan matching, the 

efficiency is guaranteed. Meanwhile, the coarse motion 

estimation is applied as the initial guess for the fine mapping 

in the next section. 

3) Fine Mapping  
To refine the relative motion estimation, the fine-mapping 

process is applied to refine the 𝐦𝑘−1,𝐵
𝑘,𝐵

. The principle of the 

mapping process is that the extracted 𝐅𝑘{𝐅𝑘
𝑝

, 𝐅𝑘
𝐸} is mapped 

into the incrementally built map to refine the motion estimate, 

𝐦𝑘−1,𝐵
𝑘,𝐵

. Be noted that the map here is generated incrementally. 

This was one of the major contributions of the work (Zhang & 
Singh, 2017) that provide impressive performance locally. The 

output of the mapping process is the 𝐓𝑘,𝐵
𝐿 . However, the 

mapping process is conducted at a low frequency circle due to 
the computational cost. Therefore, the local transform 
integration is applied to integrate the high frequency but rough 

relative motion estimate (𝐦𝑘−1,𝐵
𝑘,𝐵

) and the low frequency but 

locally accurate motion estimation (𝐓𝑘,𝐵
𝐿 ). The detail of the 

mapping process can be found in (Zhang & Singh, 2014). 

B. AGPC Detection 

This section presents the detection of the AGPC based on 

the raw 3D point clouds from 3D LiDAR. For a given epoch 

𝑘 , the clouds 𝐏𝑘  usually involves abundant points scanned 

from the ground surface for ground vehicles installed with 3D 

LiDAR. For a typical 3D LiDAR sensor installed on the roof 

of a vehicle, the sensor height relative to the ground surface 

is approximately known. Numerous works (Choi, Park, Byun, 

& Yu, 2014; Yang & Förstner, 2010) were done to extract the 

ground plane based on the raw 3D point clouds. The random 

sample consensus (RANSAC) is one of the most efficient 

algorithms for detecting the ground plane parameters from the 

raw 3D point clouds. In this paper, we define the model 

parameters of a ground plane as (a) the Euclidean distance 

from the center of 3D LiDAR to the detected ground surface, 

(b) and the norm vector of the surface as follow: 

𝐆𝑘 = [𝐺𝑘
𝑥 𝐺𝑘

𝑦
𝐺𝑘

𝑧 𝑑𝑘]𝑇     (4) 

where the (𝐺𝑘
𝑥 , 𝐺𝑘

𝑦
, 𝐺𝑘

𝑧) represents the norm vector and the 𝑑𝑘 

denotes the Euclidean distance. Therefore, the ground plane 

detection problem using the RANSAC can be defined as 

follows: 

𝐆𝑘
∗ = argmin ∑ 𝑓(𝐆𝑘 , 𝐏𝑘,𝑖)𝐏𝑘,𝑖∈𝒢𝑘

    (5) 

where the 𝐆𝑘
∗ denotes the optimal parameters of the ground 

plane. The variable 𝒢𝑘 denotes a set of the given points on the 

ground surface. The operator 𝑓(∗) is employed to evaluate the 

distance between a given point 𝐏𝑘,𝑖 and the plane 𝐆𝑘. Given a 

point 𝐏𝑘,𝑖 = {𝑥𝑘,𝑖, 𝑦𝑘,𝑖, 𝑧𝑘,𝑖} and ground plane 𝐆𝑘, the distance 

can be calculated as follows: 

𝑓(𝐆𝑘, 𝐏𝑘,𝑖) = ‖𝐺𝑘
𝑥𝑥𝑘,𝑖 + 𝐺𝑘

𝑦
𝑦𝑘,𝑖 + 𝐺𝑘

𝑧𝑧𝑘,𝑖 − 𝑑𝑘‖   (6) 

where the 𝑓(𝐆𝑘, 𝐏𝑘,𝑖) represents the Euclidean distance. The 

detail of the plane detection is given in the following 

Algorithm 1. Be noted that the 𝐏𝑘  is filtered before being 

input the Algorithm by only keeping the points with z-axis 

values ranging from -2.5 to 2.5 meters. The parameters 

required in Algorithm 1 include the minimum number of 

points (𝐭𝑛𝑝) required to detect the ground plane, the maximum 

number of iterations ( 𝐭𝑖𝑡𝑒𝑟 ) allowed in the RANSAC, a 

threshold value (𝐭𝑑𝑖𝑠) of distance for judging whether a point 

fits the ground plane, a threshold of the number of points (𝐭𝑎) 

belonging to the close data indicating that the estimated 

ground plane model fits well to the points. 

Algorithm 1: Ground plane detection using RANSAC 

Inputs: Point clouds 𝐏𝑘,  

Outputs: ground plane parameters 𝐆𝑘
∗ 

Step 1: Initialize 𝑡 ← 0, 𝐆𝑘 ← [0,0,1,2] and 𝐄𝑡 ← ∞. 

Step 2: while 𝑡> 𝐭𝑖𝑡𝑒𝑟  

⚫ Step 2-1: Select 𝐓𝑛𝑝  points randomly from 𝐏𝑘 

getting 𝐐𝑘 . Fit the 𝐆𝑘  using the selected points 

(𝐐𝑘). Initialize an empty set 𝐀𝑘. 

⚫ Step 2-2: For every point 𝐑𝑘,𝑖  inside a set 

𝐑𝑘 = { 𝐏𝑘 − 𝐐𝑘 }, evaluate the distance ( 𝑒𝑘,𝑖 ) 

between the 𝐑𝑘,𝑖 and the plane 𝐆𝑘. If 𝑒𝑘,𝑖 < 𝐭𝑑𝑖𝑠, 

add 𝐑𝑘,𝑖 to 𝐀𝑘. 

⚫ Step 2-3: If the number of points inside 𝐀𝑘  is 

larger than 𝐭𝑎. Fit the parameters 𝐆𝑘 again based 

on the 𝐐𝑘  and 𝐀𝑘 . Calculate the fitting error 𝐄𝑡 

based on (6). If 𝐄𝑡 < 𝐄𝑡−1, assign 𝐆𝑘
∗ = 𝐆𝑘. 

Step 3: Finish the algorithm and the ground plane 

parameters are estimated as 𝐆𝑘
∗. 

 

 

Fig. 3 Illustration of ground detection using Algorithm 1. The white points 

represent the raw point cloud from 3D LiDAR. The red points denote the 

detected ground point cloud. 

The ground detection results based on Algorithm 1 are 

illustrated in Fig. 3 which shows the ground detection with 

data collected from typical intersections and roadways. Fig. 

3-(a) shows ground detection results in an intersection case. 

The white points denote the non-ground points and the red 

points denote the ground points. For the roadway case in Fig. 

3-(b) with the dynamic vehicles being located on both sides, 

the ground points in the front and back of the ego-vehicle are 

also effectively detected and annotated with red points.  
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C. Back-End: Loop Closure Detection 

The loop closure (Magnusson, Andreasson, Nuchter, & 

Lilienthal, 2009a) is an effective approach for reducing the 

accumulated error over time. The principle of loop closure is 

to detect the frames of the point cloud with a large percentage 

of overlap. The accumulated driving distance is denoted as 𝐷𝑘 

from the first epoch to the current one. The loop closure 

detection is performed only when the 𝐷𝑘 exceeds a threshold 

(𝐭𝐷) that tuned heuristically. Then, the loop closure is checked 

by matching the current keyframe and historical keyframes 

using the NDT in (Magnusson et al., 2009a). The loop closure 

is found when the fitness condition (Magnusson et al., 2009a) 

is smaller than a given threshold (𝐭𝐹). The output of the loop 

closure is the relative constraint between the current frame 

and the historical keyframe as follows. 

𝐓𝑖,𝑗
𝑙𝑜𝑜𝑝

= (𝐩𝑖,𝑗
𝑙𝑜𝑜𝑝

, 𝐪𝑖,𝑗
𝑙𝑜𝑜𝑝

)𝑇      (7) 

where the 𝐓𝑖,𝑗
𝑙𝑜𝑜𝑝

 denotes the transformation between the two 

keyframes corresponding to the detected loop closure, frame 

𝑖,  and 𝑗 . The 𝐩𝑖,𝑗
𝑙𝑜𝑜𝑝

 denotes the translation and the 𝐪𝑖,𝑗
𝑙𝑜𝑜𝑝

 

represents the rotation in quaternion form. 

D. Back-End: Factor Graph-based Optimization 

This section presents the factor graph construction based 

on the previously derived constraints and optimization. To 

effectively integrate the measurements from the LiDAR 

odometry (Section IV-A), APGC detection (Section IV-B), 

and loop closure (Section IV-C), we make use of the state-of-

the-art factor graph (Indelman, Williams, Kaess, & Dellaert, 

2012) to formulate the sensor fusion as a non-linear 

optimization problem. The conventional filtering-based 

sensor fusion such as the extended Kalman filter and its 

variant (Li, Li, Ji, & Dai, 2015) which exploits the first-order 

Taylor expansion only once prone to get into sub-optimal. 

The major advantages of the factor graph are the re-

linearization and iteration which can enable the optimized 

states to approach the optimal iteratively. The graph structure 

of the proposed AGPC-SLAM is shown in Fig. 4 which 

includes the listed three kinds of constraints and ego vehicle 

states. Be noted that the state of the ego-vehicle at epoch k is 

represented by the 𝐓𝐵,𝑘
𝑊  based on (1), which encodes the 

transformation between the body frame to the local world 

frame. 

 
Fig. 4 Graph structure of the proposed AGPC-SLAM. The circle denotes the 

state of the ego vehicle. the black line represents the constraint derived from 

the LiDAR odometry. The red line represents the constraint derived from 
ground plane detection. The light blue line represents the constraint from loop 

closure. 

Following (Indelman et al., 2012), the objective of the 

factor graph optimization is to minimize the error function 

between the observations and the states. The error function 

for the LiDAR odometry derived relative measurements are 

expressed as: 

||𝐞𝑘
𝐿𝑖𝐷𝐴𝑅||

𝚺𝑘
𝐿𝑖𝐷𝐴𝑅

2 = ‖(𝐓𝐵,𝑘−1
𝑊 −1

𝑻𝐵,𝑘
𝑊 ) ⊖ (𝐓𝐵,𝑘−1

𝐿 −1
𝑻𝐵,𝑘

𝐿 )‖
𝚺𝑘

𝐿𝑖𝐷𝐴𝑅

2
 (8) 

where the 𝐞𝑘
𝐿𝑖𝐷𝐴𝑅  represents the error function for the relative 

motion between node k and 𝑘 + 1 for the LiDAR odometry 

(front end). 𝚺𝑘
𝐿𝑖𝐷𝐴𝑅  denotes the information matrix of the 

error function which is tuned experimentally. 𝐓𝐵,𝑘
𝑊  and 

𝐓𝐵,𝑘−1
𝑊  denote the states at epoch k and 𝑘 − 1. 𝐓𝐵,𝑘

𝐿  represents 

the motion which is derived from LiDAR odometry in 

Section IV-A. The operator “⊖” is the minus operation of the 

homogeneous matrix in SE(3). 

Similarly, the error function for the loop closure between 

node 𝑖 and 𝑗 is as follows: 

||𝐞𝑖,𝑗
𝑙𝑜𝑜𝑝

||
𝚺𝑖,𝑗

𝑙𝑜𝑜𝑝
2 = || (𝐓𝐵,𝑖

𝑊 −1
𝐓𝐵,𝑗

𝑊 ) ⊖ 𝐓𝐿,𝑖
𝑊𝐓𝑖,𝑗

𝑙𝑜𝑜𝑝
||

𝚺𝑖,𝑗
𝑙𝑜𝑜𝑝

2   (9) 

where the 𝚺𝑖,𝑗
𝑙𝑜𝑜𝑝

 denotes the information matrix for the loop 

closure constraint 𝐓𝑖,𝑗
𝑙𝑜𝑜𝑝

 between nodes 𝑖 and 𝑗. 

Regarding the constraint from the ground plane detection, 

the measurement contains the distance (𝑑𝑘) from the center of 

LiDAR to the detected ground surface, and the norm vector 

(𝐺𝑘
𝑥 , 𝐺𝑘

𝑦
, 𝐺𝑘

𝑧) of the ground surface. The 𝑑𝑘  does not suffer 

from drift over time as it is relative to the absolute ground 

plane. Be noted that this is satisfied under the assumption that 

the vehicle is driving on almost plane ground. 

Given the pose estimation 𝐓𝐵,𝑘
𝑊  at a given epoch 𝑘, the 𝐆𝑘 

can be transformed into the local world frame as 𝐆𝑘
𝑊: 

𝐆𝑘
𝑊 = [𝐺𝑘

𝑤,𝑥′
𝐺𝑘

𝑤,𝑦′
𝐺𝑘

𝑤,𝑧′
𝑑𝑘

′]𝑇    (10) 

where the followings are satisfied. 

[𝐺𝑘
𝑤,𝑥′

𝐺𝑘
𝑤,𝑦′

𝐺𝑘
𝑤,𝑧′

]𝑇 = 𝐪𝑘
𝑊[𝐺𝑘

𝑥 𝐺𝑘
𝑦

𝐺𝑘
𝑧]𝑇  (11) 

𝑑𝑘
′ = 𝑑𝑘 − 𝐩𝑘

𝑊𝑇
[𝐺𝑘

𝑤,𝑥′
𝐺𝑘

𝑤,𝑦′
𝐺𝑘

𝑤,𝑧′
]𝑇   (12) 

After transforming the 𝐆𝑘 into the local world frame, this 

paper applies the minimum parameterization proposed in (Ma, 

Kerl, Stückler, & Cremers, 2016) τ(𝐆𝑘
𝑊) = (𝜃, 𝜑, 𝑑), where 

𝜃, 𝜑, 𝑑  are the azimuth angle, the elevation angle and the 

distance with respect to the 𝐆𝑘
𝑊, respectively. The τ(𝐆𝑘

𝑊) can 

be derived as follows (Koide, Miura, & Menegatti, 2018b; Ma 

et al., 2016): 

τ(𝐆𝑘
𝑊) = [arctan (

𝐺𝑘
𝑦′

𝐺𝑘
𝑥′) arctan (

𝐺𝑘
𝑧′

√(𝐺𝑘
𝑥′2

+𝐺𝑘
𝑦′2

+𝐺𝑘
𝑧′2

)

) 𝑑𝑘
′
]𝑇

 (13) 

Therefore, the error function for the ground plane constraint 

can be expressed as follows: 

||𝐞𝑘
𝑔𝑟𝑜𝑢𝑛𝑑

||
𝚺𝑘

𝑔𝑟𝑜𝑢𝑛𝑑
2 = ||τ(𝐆𝑘

𝑊) − τ(𝐆0
𝑊)||

𝚺𝑘
𝑔𝑟𝑜𝑢𝑛𝑑

2   (14) 
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where the 𝚺𝑘
𝑔𝑟𝑜𝑢𝑛𝑑

 is the information matrix of the τ(𝐆𝑘
𝑊) 

which is experimentally determined. 𝐆0
𝑊 = [0 0 1 0]𝑇 

is the expected prior concerning the ground constraint.  

In this case, we formulate three kinds of error functions for 

constraints. Therefore, the optimal state set 𝐓𝐵
𝑊 =

{𝐓𝐵,0
𝑊 , 𝐓𝐵,1

𝑊 , 𝐓𝐵,2
𝑊 , … , 𝐓𝐵,𝑘

𝑊 , … } can be solved as follows: 

 

𝐓𝐵
𝑊∗

= argmin ∑ (||𝐞𝑘
𝐿𝑖𝐷𝐴𝑅||

𝚺𝑘
𝐿𝑖𝐷𝐴𝑅

2 +𝑘=0,..𝐾

||𝐞𝑖,𝑗
𝑙𝑜𝑜𝑝

||
𝚺𝑖,𝑗

𝑙𝑜𝑜𝑝
2 + ||𝐞𝑘

𝑔𝑟𝑜𝑢𝑛𝑑
||

𝚺𝑘
𝑔𝑟𝑜𝑢𝑛𝑑

2 )      (15) 

where the 𝐓𝐵
𝑊∗

 denotes the state set to be estimated. The 

variable 𝐾  denotes the number of epochs involved in the 

optimization. The operation ∑ ∗𝑘=0,..𝐾  denotes the summation 

of all the error functions. The 𝚺𝑘
𝐿𝑖𝐷𝐴𝑅 , 𝚺𝑖,𝑗

𝑙𝑜𝑜𝑝
 and 𝚺𝑘

𝑔𝑟𝑜𝑢𝑛𝑑
 

denote the information matrix of the listed three kinds of 

constraint. 

E. Global Mapping and Global Transformation 

Integration 

The point clouds map relative to the local world frame can 

be obtained by registering all the frames of point clouds based 

on the states set 𝐓𝐵
𝑊 optimized in Section IV-D.  

To guarantee real-time performance, the factor graph 

optimization is conducted at a frequency of 1 Hz. Each time 

when the optimization is finished, the transformation between 

the local world frame and the local base frame can be derived 

as follows: 

𝐓𝐿,𝑘
𝑊 = 𝐓𝐵,𝑘

𝑊 (𝐓𝐵,𝑘
𝐿 )−1      (16) 

Be noted that the 𝐓𝐵,𝑘
𝐿  is obtained by tracking the relative 

motion from LiDAR odometry at a frequency of 10 Hz (the 

frequency of the raw 3D point clouds). Once the 𝐓𝐵
𝐿  is 

obtained at epoch l and 𝑙 > 𝑘. The 𝐓𝐵,𝑙
𝑊  is derived as follows: 

𝐓𝐵,𝑙
𝑊 = 𝐓𝐿,𝑘

𝑊 𝐓𝐵,𝑙
𝐿        (17) 

therefore, the 𝐓𝐵
𝑊 can be obtained at a frequency of 10 Hz 

which is significant for the application with real-time 

performance requirements. 

V. EXPERIMENT RESULTS AND DISCUSSIONS 

To validate the performance of the proposed AGPC-SLAM, 

we conduct two real experiments in scenes of Hong Kong. 

The first scene is Nathan Road, which is one of the typical 

scenes in Hong Kong. Meanwhile, the road is almost flat 

throughout the test and the driving distance is about 4.2 

kilometers. We are fully aware that the proposed method 

relies on the assumption that the ground is almost flat during 

the operation. Therefore, we conduct the other experiment 

validation in the other scene (the driving distance is about 2.1 

kilometers) with a partial ramp road to further evaluate how 

the proposed method can perform. 

During the experiment, the 3D LiDAR (Velodyne 32) is 

used to collect 3D point clouds. Besides, the NovAtel SPAN-

CPT, a GNSS (GPS, GLONASS, and Beidou) RTK/INS 

(fiber-optic gyroscopes, FOG) integrated navigation system 

was used to provide ground truth of positioning. The gyro bias 

in-run stability of the FOG is 1 degree per hour, and its 

random walk is 0.067 degrees per hour. The baseline between 

the rover and the GNSS base station is within 7 km. All the 

data were collected and synchronized using a robot operation 

system (ROS) (Quigley et al., 2009). All the data are post-

processed using a desktop (Intel Core i7-9700K CPU, 

3.60Ghz) computer. Be noted that the performance of the 

proposed method is evaluated by aligning the pose from 

SLAM and the NovAtel SPAN-CPT to the east, north, and up 

(ENU) coordinate. The extrinsic transformation matrix 

between the ENU frame and the local world frame is provided 

by the NovAtel SPAN-CPT. The parameters used in the 

proposed AGPC-SLAM are given in Table 1. 

Table 1. Parameters used during the experimental validation 

Para. t𝑛𝑝 t𝑑𝑖𝑠 t𝑎 t𝑖𝑡𝑒𝑟  t𝐷 

Values 800 0.25  500 1000 20.0 

Para. t𝐹 𝚺𝑘
𝐿𝑖𝐷𝐴𝑅 𝚺𝑖,𝑗

𝑙𝑜𝑜𝑝
 𝚺𝑘

𝑔𝑟𝑜𝑢𝑛𝑑
 t𝑐 

Values 0.80 10 𝐈6×6 10 𝐈6×6 4 𝐈3×3 0.1 

A. Experimental Validation in Scene 1 

The experimental setup is shown in Fig. 5. During the 

evaluation, we compare the proposed AGPC-SLAM 

framework with the state-of-the-art LeGO-LOAM (Shan & 

Englot, 2018).  

1) Evaluation Metrics 

As Fig. 5-(b) shows, the fixed solution is hard to obtain 

using NovAtel SPAN-CPT throughout the evaluated scene 1. 

This is caused by low satellite visibility due to the dense and 

tall buildings. However, we find that the positioning status of 

the NovAtel SPAN-CPT is healthy in several road 

intersections (see the A, B, C, D, E, and F in Fig. 5-(c)) where 

the satellite geometry is better. We carefully check the 

positioning results of the NovAtel SPAN-CPT in the selected 

six intersection points and at least the float solution is 

obtained. Therefore, we propose to evaluate the performance 

of the proposed method based on the following metrics. 

(1) Ground control point (GCP) error: evaluating the 

accuracy at 6 selected GCPs (A~F in Fig. 5). Both absolute 

translation and rotation errors are evaluated. 

(2) Accumulated error: evaluating the accumulated error 

after driving a loop with/without the loop closure constraints. 

Without loss of generality, the accumulated error metric is 

also adopted in the KITTI dataset (Geiger et al., 2012) for 

performance evaluation of the LiDAR odometry. 
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Fig. 5 (a) data collection vehicle with all the sensors installed in a compact 

sensor kit, (b) tested scenarios, and (c) trajectory with a driving distance of 

4.2 km. 

2) Performance Analysis 

The mean errors of the rotation and translation of the six 

selected GCPs using are shown in Tables 2 and 3, respectively. 

Regarding the mean rotation error (Table 2), the LeGO-

LOAM introduces a mean error in pitch angle (6.93°). The 

error in yaw and roll are 2.57° and 2.16°, respectively. With 

the help of the proposed AGPC, the error in pitch angle is 

decreased to 1.35° which shows that the proposed method can 

effectively mitigate the drift in pitch angle. The performance 

in the yaw and roll angle is also improved slightly.  

Table 2. Performance of the rotation estimation in scene 

1. %: [Total]/[total driving distance]) 

Method Roll Pitch Yaw Total  % 

LeGO-LOAM 

(Shan & Englot, 

2018) 

2.57° 6.93° 2.16° 7.70° 

0.18

% 

AGPC-SLAM 

(proposed) 
1.36° 1.35° 2.61° 3.24° 

0.07

% 

AGPC-SLAM 

(with loop 

closure) 

1.29° 1.21° 1.53° 2.33° 
0.056

% 

Table 3. Performance of the translation estimation in scene 

1. (AE: accumulated absolute error. %: [ENU]/[total driving 

distance]) 

Method East North Up ENU AE % 

LeGO-LOAM 

(Shan & 

Englot, 2018) 

3.89m 
11.58

m 

43.8

3m 

45.49

m 

34.80

m 

1.08

% 

AGPC-SLAM  1.39m 2.65m 
0.41

m 
3.02m 1.89m 

0.04

% 

AGPC-SLAM 

(loop closure) 
1.32m 2.36m 

0.40
m 

2.73m 0.52m 
0.06
5% 

 

Fig. 6 Illustration of the map generated by the two methods. Illustration of 
the map generated using LeGO-LOAM (top panel) and the proposed AGPC-

SLAM (bottom panel). The color of the map is annotated by the value of the 

z-axis (height) of each point. 

Regarding the mean translation error, the errors of LeGO-

LOAM in the east and north direction are 3.89 and 11.58 

meters, respectively. Meanwhile, the error in the altitude (up) 

is about 43.83 meters. The total mean error in east, north, and 

up directions is 45.49 meters. The accumulated error (the 

error at the last epoch) reaches 34.80 meters. The last column 

represents the percentage of mean error concerning the total 

driving distance. With the help of the proposed AGPC-SLAM, 

the mean error is decreased to 3.02 meters and the 

accumulated error is only 1.89 meters. The significant 

improvement in the vertical direction shows that the proposed 

AGPC can effectively constrain the drift. Meanwhile, the 

detailed performances at six GCPs can be found in the 

Appendix of this paper (see Fig. 12 and 13). 

After applying the loop closure constraint, the LeGO-

LOAM cannot successfully detect the loop closure due to the 

large drift which can be seen in the top panel of Fig. 6. 

Therefore, the loop closure result for LeGO-LOAM is not 

provided in Tables 2 and 3. However, the rotation estimation 

for the proposed method is improved with the help of loop 

closure with a mean rotation error of 2.33° and the result of 

the map can be seen in the bottom panel Fig. 6. With the help 

of the loop closure, the mean error of translation decreases to 

2.73 meters and the accumulated error is only 0.52 meters. 

The percentage of the error is only 0.065%. Although the loop 

closure detection is not the major contribution of this paper, 

the results show that the proposed AGPC could further 

enhance the detection of the loop closure. 

Fig. 7 shows the details of the generated point map with the 

color being annotated by the reflectivity. The lane lines and 

building boundaries are clear which can be seen from Fig. 7-

(a) and Fig. 7-(b). The detailed video of the proposed AGPC-

SLAM in scene 1 can be found via the link 
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(https://www.youtube.com/watch?v=3nS895StJUo&feature

=youtu.be). 

 

Fig. 7 Details of the generated map with reflectivity using the proposed 

AGPC-SLAM in scene 1. 

B. Experimental Validation in Scene 2 

1) Evaluation Metrics 

To further evaluate how the proposed method can perform 

in the scenario with partial ramp road, we perform the other 

experiment in Tsim Sha Tsui of Hong Kong. The scene is 

shown in Fig. 8 where the red dots denote the evaluated 

trajectory. The ramp road starts with an altitude of 0 meters 

(the height is relative to the start point), increases to a 

maximum altitude of 2 meters, and decreases to 0 meters by 

the end of the ramp road. More importantly, the fixed 

solutions are available frequently during the test. Therefore, 

the pose from the NovAtel SPAN-CPT is directly used as the 

ground truth solution of scene 2. 

 

Fig. 8 (a) Environmental condition at the start point (blue shaded circle). (b) 

the scene with partial ramp road (red shaded area).  

Since the LiDAR SLAM only provides the relative 

positioning concerning the starting point. Therefore, we apply 

the popular EVO (Grupp, 2017) toolkit to evaluate the relative 

error (RPE) for translation and rotation. Meanwhile, the 

evaluation metrics are as follows: 

(1) RMSE: Root-mean-square error of the relative 

translation and rotation. 

(2) MEAN: Mean error of the relative translation and 

rotation. 

To further show the effectiveness of the proposed method 

in mitigating the vertical and overall drift, we add three 

additional evaluation metrics as follows: 

(1) Altitude: the accumulated altitude drift by the end of the 

trajectory. 

(2) AE: the accumulated error of translation (meters) and 

rotation (degrees) by the end of the trajectory.  

(3) %: calculated by the [accumulated drift]/[total driving 

distance]. This is adopted to evaluate the overall drift of the 

SLAM algorithm.  

2) Performance Analysis  

Table 4 shows the performance of the translation and 

rotation estimation using LeGO-LOAM and the proposed 

AGPC-SALM, respectively. Be noted that the loop closure is 

not applied regarding the results in Table 4, therefore, to 

evaluate the contribution of the standalone AGPC. Regarding 

the translation, both the MEAN and RMSE are reduced with 

the help of the AGPC using the proposed method. Although 

the LeGO-LOAM proposed to estimate the motion of the z-

axis and pitch angle using ground points, the final altitude 

drift still reaches 7.36 meters by the end of the test. 

Fortunately, the drift in altitude decreases to only 0.21 meters 

with the help of the AGPC which shows the effectiveness of 

the proposed AGPC. Meanwhile, the overall drift is also 

reduced using the proposed AGPC-SLAM (see “AE” and “%” 

in Table 4). 

Table 4. Performance of the translation and rotation 

estimation in scene 2.  

Method MEAN RMSE 
Altit

ude 
AE % 

LeGO-LOAM 

(Shan & Englot, 

2018) 

(Translation) 

0.33 m 0.46 m 
7.36 

m 
8.92 m 

0.42

% 

AGPC-SLAM 

(Translation) 
0.27 m 0.38 m 

0.21 

m 
5.26 m 

0.26

% 

LeGO-LOAM 

(Shan & Englot, 

2018) (Rotation) 

0.69° 1.22°  3.72° 
0.19

% 

AGPC-SLAM 

(Rotation) 
0.58° 1.07°  1.87° 

0.09

% 

The continuous 3D trajectories of LeGO-LOAM, AGPC-

SLAM, and ground truth are shown in Fig. 9. Specifically, the 

altitude during the test is shown in Fig. 10. The black curve 

denotes the altitude provided by the NovAtel SPAN-CPT. We 

can see that the altitude estimation using the LeGO-LOAM 

deviates significantly from the ground truth during epoch 

150~240 which is corresponding to the red shaded area in Fig. 

9. During this period, one side of the road is filled with 

buildings surfaces which is a feature-insufficient scene. The 

other side is dense foliage with numerous similar tree leaves, 

increasing the difficulty of finding correct correspondence of 

LOAM. As a result, the LeGO-LOAM drift significantly. 

With the help of the AGPC, the altitude drift is mitigated 

accordingly.  

https://www.youtube.com/watch?v=3nS895StJUo&feature=youtu.be
https://www.youtube.com/watch?v=3nS895StJUo&feature=youtu.be
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Fig. 9 Trajectories of the LeGO-LOAM (red curve), AGPC-SLAM (blue 

curve), and ground truth trajectory (black curve).  

 

Fig. 10 Altitude of the LeGO-LOAM (red curve), AGPC-SLAM (blue curve), 

and ground truth trajectory (black curve) during the testing area with the ramp 

road.  

The RPE of the translation and rotation estimations are 

provided in Figs. 11. The improvements can also be seen by 

the figure for both translation and rotation. The red and blue 

dash curves denote the translation errors of LeGO-LOAM and 

AGPC-SLAM, respectively. The black and cyan dash curves 

denote the rotation errors of LeGO-LOAM and AGPC-SLAM, 

respectively.  

 
Fig. 11 Relative translation and rotation errors for LeGO-LOAM and the 
proposed AGPC-SLAM, respectively. The x-axis denotes the epoch and. The 

left y-axis denotes the translation error in the unit of meter. The right y-axis 

denotes the rotation error in the unit of degree. 

As shown in Fig. 8, scene 2 involves a ramp road with the 

altitude deviating from 0 to 2 meters, which is corresponding 

to the annotated area by the red rectangle in Fig. 9. The 

estimated altitude using AGPC-SLAM deviates from the 

ground truth altitude (black curve). This is caused by the 

violation of the assumption that the ground plane is flat during 

the operation, which is required by the proposed method in 

this paper. In the future, we will study the ramp road surface 

identification and remove the AGPC when the slope surface 

is detected. The detailed video of the test in scene 2 can be 

found via the link 

(https://www.youtube.com/watch?v=mgLxxlhlscY&feature

=youtu.be). 

The performance of the translation and rotation angle 

estimation of AGPC-SLAM with loop closure is presented in 

Table 5. Although the loop closure is enabled in LeGO-

LOAM, the loop is not successfully detected due to the large 

drift in the z-axis of LeGO-LOAM. However, the loop closure 

is detected using the proposed AGPC-SLAM as the vertical 

drift is improved. We believe that this is another contribution 

of the AGPC which improves the detection of the loop closure. 

Table 5. Performance of translation and rotation estimation 

with loop closure  

Method 
Trans. 

RMSE 

Rot. 

RMSE 
Altitude 

LeGO-LOAM (Shan & 

Englot, 2018) (Loop 

closure) 

Loop Not 

Detected 

Loop Not 

Detected 

Loop 

Not 
Detected 

AGPC-SLAM (Loop 

closure) 
0.43 m 0.64° 0.13 m 

VI. CONCLUSION AND FUTURE WORK 

To mitigate the drift of the LiDAR SLAM in the vertical 

direction due to the limited field of view of the LiDAR sensor, 

this paper proposes an AGPC-SLAM that achieved improved 

accuracy compared with the existing state-of-the-art LeGO-

LOAM. This paper innovatively proposes to employ absolute 

ground plane detection to mitigate the drift in z-axis related 

states. Moreover, better-constrained positioning in the z-axis 

and pitch angle can also improve the positioning in x- and y-

axes. We test the proposed method in two typical scenarios in 

Hong Kong. The results show that the proposed method can 

effectively mitigate the drift on the z-axis in both the 

evaluated scenarios. 

One of the limitations of our work is that the proposed 

method can be effective only when the flat ground plane is 

available. In some extremities, the ground can be fully 

occluded by the surrounding dynamic vehicles which can lead 

to misidentification of the ground surface. Besides, the 

ground surface can be a slope that cannot be simply modeled 

using a plane function. In the future, we will study the scene 

with slope and derive the corresponding constraints to 

alleviate the drift of 3D LiDAR SLAM in urban canyons. 

https://www.youtube.com/watch?v=mgLxxlhlscY&feature=youtu.be
https://www.youtube.com/watch?v=mgLxxlhlscY&feature=youtu.be
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APPENDIX: PERFORMANCE OF AGPC-SLAM AT 6 GCPS 

 
Fig. 12 Errors of the roll, pitch, and yaw angles for LeGO-LOAMand the 
proposed AGPC-SLAM. The x-axis denotes the ID of the GCPs from 1 to 6. 

The y-axis denotes the errors.  

 
Fig. 13 Errors of the up (altitude), and ENU for LeGO-LOAM and the 

proposed AGPC-SLAM, respectively. The x-axis denotes the ID of the GCPs 

from 1 to 6. The y-axis denotes the errors.  
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